Discriminative impact of ultrafiltration on peritoneal protein transport.
نویسندگان
چکیده
OBJECTIVE The dialysate concentration of large proteins increases, on average, linearly during the whole peritoneal dialysis dwell, and this linear pattern seems to be independent of the rate of ultrafiltration induced by dialysis fluid. However, we observed a high variability of protein kinetics in individual dwell studies. Therefore, we studied the details of the kinetic pattern of peritoneal transport. DESIGN AND METHODS Kinetics of beta2-microglobulin, albumin, and total protein was examined in 23 clinically stable continuous ambulatory peritoneal dialysis patients using Dianeal 3.86% (15 dwell studies) or Dianeal 1.36% (9 dwell studies) dialysis fluid. Dialysate volume was measured using radioisotopically labeled albumin as a volume marker, with corrections for sample volume and absorption of fluid and marker from the peritoneal cavity. The generalized version of the Babb-Randerson-Farrell model was applied to estimate diffusive mass transport coefficient (K(BD)) and sieving coefficient (S) for proteins and small solutes (urea, creatinine, glucose, sodium, potassium). To quantify deviations from the linear pattern of protein dialysate concentration increase, the ratio (SR) of the slope of the linear regression line for the initial 3-30 minutes, divided by the slope for the next 60 - 360 minutes, was evaluated for albumin. RESULTS In 5 dwell studies with Dianeal 3.86% fluid, SR was lower than 1 [low albumin transport (LAT) group, median SR = 0.49, range -4.39 - 0.71], while in the other 10 dwell studies with this solution, SR was higher than 1 [high albumin transport (HAT) group, median SR = 2.77, range 1.32 - 7.56]. Clearances of albumin up to 120 minutes were higher in the HAT group than in the LAT group. The transport of fluid, beta2-microglobulin, and small solutes did not differ between the LAT and the HAT groups. K(BD) values for proteins did not differ between the groups, but S values for albumin and total protein were lower for the LAT group than for the HAT group. A similar diversity was found in the dwell studies with Dianeal 1.36%: In three dwell studies, SR for albumin was lower than 1 (median SR = 0.95, range 0.70 - 0.97), and in six dwells it was higher than 1 (median SR = 1.55, range 1.23 - 1.98). In general, the SR values observed with Dianeal 1.36% were closer to 1 than those for Dianeal 3.86%. CONCLUSIONS Ultrafiltration may affect the initial kinetic patterns of large protein (such as albumin) transport in two opposing ways: (1) by slowing the increase of protein concentration in dialysate (due to a low sieving coefficient, LAT group), and (2) by speeding up the increase of protein concentration in dialysate (due to a high sieving coefficient, HAT group). The average pattern in a non-selected group of studies is, however, close to a steady (linear) increase.
منابع مشابه
Correlation between Ultrafiltration Coefficient and Effective Lymphatic Absorption Rate in Continuous Ambulatory Peritoneal Dialysis Patients: A Possible Paradigm Shift
Background: The relative contribution of transcapillary water movement and lymphatic reabsorption in peritoneal dialysis (PD) is a critical issue, particularly in patients with ultrafiltration failure (UFF). Based on routine results obtained from the PD Adequest 2.0 software, the present study aimed to re-evaluate the separate effects of transcapillary water movement and lymphatic reabsorption ...
متن کاملPeritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence.
The integrity of the peritoneal membrane in peritoneal dialysis (PD) is of major importance for adequate dialysis and fluid balance. However, alterations in peritoneal fluid transport, such as ultrafiltration failure, often develop during long-term PD. To investigate peritoneal solute and fluid transport and to analyze the influence of treatment time, peritonitis incidence, and PD modality (con...
متن کاملThe impact of residual renal function on survival.
(See related article by A. Parikova et al. Free water transport, small pore transport and the osmotic pressure gradient. Free water transport, small pore transport and the osmotic pressure gradient three-pore model of peritoneal transport. Simonsen O et al. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. A et al. Aquaporin-1 plays an...
متن کاملThe value of osmotic conductance and free water transport in the prediction of encapsulating peritoneal sclerosis.
Qualitative assessments in long-term patients and in those with encapsulating peritoneal sclerosis (EPS) have shown that impaired osmotic conductance is likely a factor contributing to the presence of ultrafiltration failure in those individuals. In the present study, we investigated the value of osmotic conductance, its components LpA and the reflection coefficient sigma, and free water transp...
متن کاملUltrafiltration failure in peritoneal dialysis: a pathophysiologic approach.
BACKGROUND Ultrafiltration failure is a significant cause of technique failure for peritoneal dialysis and subsequent transfer to hemodialysis. SUMMARY Ultrafiltration failure is defined as failure to achieve at least 400 ml of net ultrafiltration during a 4 h dwell using 4.25% dextrose. Four major causes of ultrafiltration failure have been described. A highly effective peritoneal surface ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2000